BRITISH COLUMBIA COLLEGES

Senior High School Mathematics Contest

Part A Final Round April 30, 1999

1	Of 28 students taking at least one of Mathematics, English, or History, those students
1.	, 9 ,
	taking only one subject are all taking Mathematics. Of those students taking exactly
	two of the three subjects, it is known that the number taking Mathematics and English
	is identical to the number taking Mathematics only; six students are taking Mathematics
	and History; and the number taking History and English is even, non-zero, and equal
	to five times the number taking all three subjects. The number taking Mathematics
	and English only is:

(a)	5

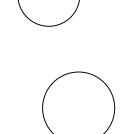
(b) 6

(c) 7

(d) 8

(e) 9

2. How many circles can be drawn which are tangent to each of the 3 circles shown?


(a) 2

(b) 3

(c) 5

(d) 6

(e) 8

A possible angle, x, in radians which satisfies $\log_2(\cos(x)) = -\frac{1}{2}$ is: 3.

(a) $\frac{\pi}{6}$

(b) $\frac{2\pi}{2}$

(c) $\frac{3\pi}{4}$

(d) $\frac{4\pi}{2}$

Positive integers which read the same backwards as forwards are called palindromes; for example, 11, 252, and 31013 are palindromes. The number of palindromes less than 10⁶, but greater than 10 is:

(a) 999

(b) 10^3

(c) 1089

(d) 1989

(e) 2209

Five students are seated at a round table. After a break they are randomly assigned a seat at the same table. What is the probability that each student will have the same neighbours again? (It does not matter whether a given neighbour sits to the left or right.)

(a) $\frac{1}{120}$

(b) $\frac{1}{60}$ (c) $\frac{1}{5}$ (d) $\frac{1}{10}$

(e) $\frac{1}{12}$

The squash season is nearing its end, and the current individual standings are shown in 6. the chart. Each of the 8 players must still play 28 games, 4 with each of the other players. How many players still have a theoretical chance to at least tie for the championship?

	\mathbf{A}							
Games Won:	92	91	90	71	67	66	44	39
Games Won: Games Lost:	48	49	50	69	73	74	96	101
(a) 3	(b) 4			(c)	5		(d) 6

(e) 7

	(a) y	(b) y^2	(c) $\frac{1}{1+y}$	(d) $\frac{y}{1+y}$	(e) $\frac{y^2}{1+y}$				
	Of the followin area?	g triangles given	by the lengths of	their sides, which	one has the greatest				
	(a) 5, 12, 12	(b) 5, 12, 13	(c) $5, 12, 14$	(d) 5, 12, 15	(e) 5, 12, 16				
	Determine the number of divisors of a positive integer m if								
	(i) m^2 has 35 divisors;								
	(ii) exactly two of the divisors of m are prime numbers.								
	of 12 are 1, 2, 3, 4, 6, 12, among which 2 and 3 are prime numbers. A <i>prime</i> number is a positive integer different from 1 that cannot be factored into a product of two smaller positive integers.)								
	() 10	(b) 7	(c) 5	(d) 10	(e) 8				
	(a) 12	()							
	At 3:00 the mi the second har position 0 seco again perpendi	nute hand and that is aligned with nds. At the next cular, the position	h the minute han moment when the on of the second h	d over the 12 on the minute hand an trand is closest to t	-				
•	At 3:00 the mi the second har position 0 seco	nute hand and that is aligned with nds. At the next cular, the position	h the minute han moment when the on of the second h	d over the 12 on he minute hand an	the clock. Call this d the hour hand are he position:				
•	At 3:00 the mi the second har position 0 seco again perpendi	nute hand and that is aligned with nds. At the next cular, the position	h the minute han moment when the on of the second h	d over the 12 on the minute hand an trand is closest to t	the clock. Call this d the hour hand are he position:				
	At 3:00 the mi the second har position 0 seco again perpendi	nute hand and that is aligned with nds. At the next cular, the position	h the minute han moment when the on of the second h	d over the 12 on the minute hand an trand is closest to t	the clock. Call this d the hour hand are he position:				