BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 2010

Junior Final, Part A

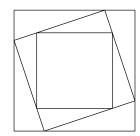
Friday, May 7

1.	An operation consists of doubling a number and then subtracting 1. This operation is carried out 30 times starting with the number 3. The final value is:									
	(A)	$2^{31} + 1$	(B)	$3 \cdot 2^{30} + 1$	(C)	$3\cdot 2^{30}$	(D)	$3 \cdot 2^{31}$	(E)	$2^{31} - 1$
2.	The 2^n is	he number of pairs (m, n) , where m and n are positive integers, that satisfy the equation m $(m + 1)$ is:								equation $m(m+1) =$
	(A)	0	(B)	1	(C)	2	(D)	3	(E)	more than 3
3.										es each of dimension in square centimetres,
	(A)	120	(B)	160	(C)	170	(D)	190	(E)	230
4.	deci		the le	ngth of $\hat{4}$ prin						llion digits to write in illometres required to
	(A)	5	(B)	9	(C)	11	(D)	21	(E)	32
5.	two	erve that 800 : integers. Of t ares of two int	he fo	llowing numb	ence, ers th	that 800 can b ne number tha	e exp it can	ressed as the not be express	differ sed a	ence of the squares of s the difference of the
	(A)	40	(B)	41	(C)	42	(D)	43	(E)	44
6.		The number of ways to make change for one dollar using only nickels, dimes, and quarters, using a east one of each is:								
	(A)	9	(B)	10	(C)	11	(D)	13	(E)	15
7.										ur students. Each stu- n student announcing

his or her award, but the letters are accidentally mixed up so that each student receives the letter for a

(D) 6

(E) 1


different student. The number of ways in which this can happen is:

(B) 12

(A) 15

(C) 9

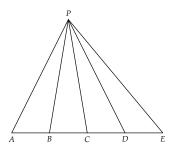
8. The diagram shows three nested squares. The middle square is positioned so that each of its corners divides a side of the outer square into segments whose length are in ratio 3:1. Similarly, the inner square is positioned so that each of its corners divides the side of the middle square into segments whose lengths are in ratio 3:1. The ratio of area of the inner square to the area of the outer square is:

- (A) 9:16
- (B) 25:81
- (C) 4:9

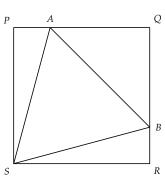
- (D) 25:64
- (E) 1:2
- 9. Suppose that

$$\frac{97}{19} = w + \frac{1}{x + \frac{1}{y}}$$

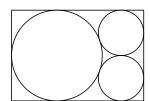
where w, x, and y are positive integers. The value of w + x + y is:


- (A) 14
- (B) 16
- (C) 19
- (D) 21
- (E) 26
- 10. In a certain school 25% of the students are blue-eyed and 75% are brown-eyed. Also, 10% of the blue-eyed students are left-handed, and 5% of the brown-eyed students are left-handed. The percentage of left-handed students who are blue-eyed is:
 - (A) 10
- (B) 15
- (C) 20
- (D) 30
- (E) 40

BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 2010


Junior Final, Part B

Friday, May 7


- 1. (a) Find the sum of all positive whole numbers less than 2010 for which the units digit is either a '3' or an '8'.
 - (b) Two cans X and Y both contain some water. From X Tim pours as much water into Y as Y already contains. Then, from Y he pours as much water into X as X already contains. Finally, he pours from X into Y as much water as Y already contains. Each can now contains 24 units of water. Determine the number of units of water in each can at the start.
- 2. The area of triangle APE shown in the diagram is 12. Given that $\overline{AB} = \overline{BC} = \overline{CD} = \overline{DE}$, determine the sum of the areas of all the triangles that appear in the diagram.

3. Given that *PQRS* is a square and *ABS* is an equilateral triangle (See the figure.), find the ratio of the area of triangle *APS* to the area of triangle *ABQ*.

- 4. Find the five distinct integers for which the sums of each distinct pair of integers are the numbers 0, 1, 2, 4, 7, 8, 9, 10, 11, and 12.
- 5. A rectangle contains three circles, as in the diagram, all tangent to the rectangle and to each other. The height of the rectangle is 4. Determine the width of the rectangle.

